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1 Introduction 

Auditory model front ends are integrated into a vast majority of the 

speech processing systems and have been shown to outperform 

conventional speech processing techniques (Kim et al., 

1999),(Tchorz and Kollmeier, 1999). Multiple approaches to 

computational auditory modelling have been reported in the 

literature. For example, conventional auditory filters have been 

implemented using a set of overlapping parallel filter banks 

(Hohmann, 2002),(Irino and Patterson, 2006). Alternatively, 

transmission line auditory models (Lyon, 1997) (Kates, 1991), a 

cascade of digital filters that closely mimic underlying cochlea 

physiology have also been developed. These transmission line 

models reproduce auditory responses more realistically than 

parallel filter bank models (Lyon, 2011b),(Hemmert et al., 2004). 

      Sharp frequency tuning and nonlinear level dependent 

dynamic range compression are known to be two prominent 

phenomena responsible for the sensitivity and selectivity of the 

auditory systems over a broad intensity and frequency range 

(Moore, 1985),(Robles and Ruggero, 2001). Measurements of 

mammalian cochlea demonstrate that the cochlea has remarkable 

frequency selectivity with a steep high-frequency roll-off (Moore, 

1978). This improved frequency selectivity in turn could lead to 

noise robustness (Li, 2009). 

     The level-dependent nonlinear dynamic range compression is 

achieved via an active feedback mechanism that modifies the 

auditory response such that low amplitude input signals are 

boosted. This contributes to increasing the speech intelligibility 

(French and Steinberg, 1947), (Villchur, 1989).Auditory models 

that include level-dependent nonlinearity have been shown to 

improve the generalisability of speech enhancement systems 

(Baby and Verhulst, 2018) and have been successful in analysing, 

classifying and recognising sounds in applications such as audio 

content categorisation and music recommendation (Lyon, 2011b). 

     A number of active auditory models that include the level 

dependent nonlinearities have been validated by comparing 

response characteristics with the available experimental 

measurements of the cochlea (Walters, 2011), (Kates, 1993). 

However, their application in different speech processing systems 

has not been extensively investigated thus far.  

     In this paper, an active cochlear model that is focused on 

reproducing the sharp frequency tuning and level-dependent 

nonlinear characteristics of the cochlea in a way that closely 

matches the physiological observations is developed. A front-end 

based on this model is then developed for replay spoofing attack 

detection in automatic speaker verification systems. The channel 

and environmental acoustic distortions are the key discriminative 

cues used to identify the replay attack (Wu et al., 2015), (Singh 

and Pati, 2019). It is anticipated that the proposed model will 

effectively capture these discriminative cues from regions of 

silence, pauses or low speech amplitude. The proposed model is an 

extends earlier work published by the authors (Gunendradasan et 

al., 2019a),(Gunendradasan et al., 2019b) to incorporate level-

dependent non-linear dynamic range compression. 

2 Related work 

This section discusses the literature on the auditory models that 

incorporate sharp frequency tuning and nonlinear level-dependent 

cochlea characteristics as well as some background on replay 

spoofing attack detection. 

2.1 Frequency selectivity in auditory models 

Frequency selectivity of the cochlea is an essential factor for the 

perception of loudness, timbre, and pitch, and to understand the 

speech signals, particularly in a noisy environment. Experimental 

observations reveal that the auditory filters are asymmetric with a 

rounded peak and have very steep slopes with a steeper high-

frequency roll-off (390dB/octave at 1kHz) compared to the low-

frequency roll-off (135dB/octave at 1kHz) (Moore, 1978). 
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     Early auditory filters used simple resonant filters to represent 

critical bands but suffered from poor frequency selectivity 

(Patterson, 1976). The findings of psychoacoustic and 

physiological experiments motivate the evolution of the now 

widely known gammatone families of filter banks (Patterson et al., 

1987). The impulse response of the gammatone filters 

characterises the impulse response obtained at the neural nerve 

fibres of the cat cochlea (Johannesma, 1972). These filters have 

been successfully used in many speech processing applications (Qi 

et al., 2013),(Liu, 2018),(Yin et al., 2011). However, the 

magnitude response of gammatone filters does not accurately 

represent the shape and the sharp frequency tuning of the auditory 

filter response.  

    In most auditory models reported in the literature, the slope 

measurements did not receive much attention, and the selectivity 

of the filters are reported in terms of the quality factor (Q-factor). 

However, Q-factor is a more general estimate of the selectivity of 

the auditory filter, and it does not correctly describe the essential 

details of auditory tuning and the shape of the auditory filters 

(Allen, 2001).  

    The transmission line cochlear models (Ambikairajah et al., 

1989) which closely model the cochlea mechanics have the 

inherent advantage of reproducing the observed auditory filter 

shapes as illustrated in Fig. 1, which is compared against 

gammatone auditory filter. It is clear from the figure that the 

transmission line cochlear model has a very sharp frequency tuning 

compared with a gammatone filter. It has a very steep slope S1 on 

the high-frequency side and is less steep on the low-frequency side. 

The low side is defined by a steeper slope S2  near the peak 

frequency followed by a shallower slope S3. 

2.2 Dynamic range compression in auditory models 

Mammalian auditory system also have the capacity to detect and 

analyse a broad range of input signal intensities ranging up to 120 

dB SPL. The outer hair cell (OHC) in the cochlea enable the 

auditory system to compress this large dynamic range in the input 

to a much smaller dynamic range in the neural signals by 

amplifying the low amplitude signals (Lyon, 1990),(Lyon and 

Mead, 1988). Most active cochlear models that include this level-

dependent compression nonlinearity adapt the model filter 

parameters to achieve the desired compression. In the dynamic 

compressive gammachirp (dcGC) model, the filter response 

changes with signal level are implemented by varying the centre 

frequency of the asymmetric high-pass function (Irino and 

Patterson, 2001). Both MBPNL (Goldstein, 1990) and DRNL 

(Meddis et al., 2001) used similar parallel architectures and 

nonlinear functions to model the nonlinear psychoacoustic 

properties. Gammatone filters, such as all-pole gammatone filters 

(APGF) (Lyon, 1996), and the cascade models CAR-FAC (Lyon, 

2011a) and all-pole filter cascade models (Lyon, 1997) achieved 

the compressive mechanism by varying the pole position. It is 

anticipated that the high frequency selectivity arising from the 

steep roll-offs of the auditory filters combined with the dynamic 

range compression of the auditory system benefits speech and 

audio perception under a range of adverse conditions. We expect 

these properties will also be useful in picking up channel 

characteristics in replay attack detection. 

2.3 Replay spoofing attack 

Automatic speaker verification (ASV) technology which uses 

voice-based authentication is now a widely adopted technology as 

a security measure in many applications. However, evidence 

shows that current ASV systems are vulnerable to malicious 

spoofing attacks where an unauthorised user uses an illegitimate 

speech sample that sounds like an authorised speaker to trick the 

ASV system into granting access. Thus, the prevention of 

malicious spoofing attacks is currently acknowledged as a priority 

area of investigation for the deployment of ASV systems and is an 

emerging field of research (Wu et al., 2015). 

     Spoofing attacks are categorised into four major types: replay 

(Gałka et al., 2015), speech synthesis (SS) (Hanilci et al., 2016), 

voice conversion (VC) (Kinnunen et al., 2012), and impersonation 

(Lau et al., 2004). A replay attack is performed by playing the pre-

recorded speech of a legitimate speaker back to the ASV system. 

Among the four spoofing variants, replay attacks pose a significant 

threat to the ASV system. This is because they are the most 

accessible type of attack as almost everyone has access to portable 

even high-quality recording and playback devices such as 

smartphones. 

    Replayed speech signal can be considered as an exact copy of a 

genuine speech signal in terms of preserving the speech content 

and speaker identity, but the additional channel and environmental 

acoustic distortions are introduced during the recording and 

playback process. The presence of such distortions is, in fact, the 

only difference between genuine and replayed speech signals and 

should be explored to differentiate them. 

     Spectral decomposition forms the front-end of most spoofing 

attack detection systems. Time-frequency representation 

techniques such as short-time Fourier transform (STFT) 

(Witkowski et al., 2017), constant-Q transform (CQT) (Delgado et 

al., 2018) and different auditory models have been used as the 

front-end for this task. Auditory models employed in this context 

include classical parallel filterbank models that use Gabor and 

Butterworth filters (Kamble et al., 2018), (Kamble et al., 2020), 

(Kamble and Patil, 2020) and parallel filterbank models that 

produce sharp frequency tuning (Wickramasinghe et al., 2019b) 

and level-dependent compression (Wickramasinghe et al., 2019a). 

Experimental results reported for these models suggest that replay 

detection systems based on auditory models tend to be more 

effective than classical time-frequency representation techniques. 

Parallel filterbank models that incorporate high selectivity and 

level-dependent nonlinearities have previously been found to be 

useful for replay detection systems. In this paper we investigate if 

 
Fig. 1. Comparison of auditory filter shapes of a transmission line cochlear 

model (Ambikairajah et al., 1989) with the gammatone filter. 
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the transmission line model, with greater frequency selectivity and 

dynamic range compression can be even more effective. 

3 Proposed adaptive transmission line (ATL) cochlear 

model 

This section presents the implementation details of the proposed 

active transmission line cochlear model developed from the 

analytical electrical representation of the cochlea. It introduces 

relevant background on the passive transmission line cochlear 

models before the proposed adaptive transmission line cochlear 

model is detailed. 

3.1 Passive transmission line cochlear models 

In the cochlea, the proposition of acoustic signals is modelled as a 

travelling wave that moves from the base to the apex of the basilar 

membrane driven by pressure variation caused by the acoustic 

signal in the cochlea fluid. The maximum membrane displacement 

occurs at the stapes (base) for high frequencies and at the far end 

(apex) for low frequencies. In the transmission line cochlea filter 

model, the basilar membrane is viewed as a cascade of small 

sections, with each section modelled as a set of filters (Fig. 2 

represents one such “filter section”). Total number of N filter 

sections are then cascaded to represent the whole cochlea. The 

passive transmission line cochlear model proposed in 

(Ambikairajah et al., 1989) determine the filters that form the filter 

section based on the transfer functions derived from the 

transmission line electrical representation of the passive cochlea. 

This model was developed to produce linear cochlea 

characteristics focusing on reproducing measured auditory filter 

shapes and frequency tuning. The isolated electrical section 

representing a small part of the basilar membrane was used to 

derive the transfer functions. The section is separated from its 

neighbours by loading it with the input impedance from the 

remaining sections. 

    The isolated electrical equivalent circuit of the passive cochlea 

will look similar to Fig. 2 (a) if the time-varying voltage source 

𝑉𝑂𝐻𝐶(𝑠)  is suppressed (Ambikairajah et al., 1989). The 

impedances 𝑅, 𝐿 and 𝐶 represent the electrical impedances of the 

basilar membrane.  The input voltage 𝑉𝑖(𝑠) and the output voltage 

𝑉𝑜(𝑠)  represent the input and output pressures in the particular 

cochlear filter section and the voltage across the capacitor 𝑉𝑚(𝑠) 
represents the displacement of the basilar membrane. 𝑉𝑇ℎ(𝑠) and 

𝑍𝑇ℎ  represent the Thévenin voltage and impedance obtained 

during the isolation process (Ambikairajah et al., 1989). The 

electrical circuit model of a filter section, Fig. 2 (a), can 

equivalently be modelled as a cascade of lowpass, resonant and 

notch filters as illustrated in Fig. 2 (b) when feedback via outer hair 

cells are not considered.   

3.2  Proposed ATL cochlear model 

In the well-known electrical transmission line model, the effect of 

the outer hair cells are introduced as a voltage sources (Giguere 

and Woodland, 1994). Here we propose that this voltage source be 

modelled as a dependent voltage to introduce the desired feedback 

which in turn will provide the dynamic range compression. 

Specifically, as shown in Fig. 2 (a), we assumed that 𝑉𝑂𝐻𝐶(𝑠)  is 

proportional to 𝑉𝑇ℎ(𝑠),    
 

𝑉𝑂𝐻𝐶(𝑠) =  𝑔̃𝑉𝑇ℎ(𝑠)                                       (1)   

where 𝑔̃ is an adaptive gain that varies with time (note that in this 

paper we use ̃  to denote adaptive parameters). We also further 

simplify the circuit by replacing the Thévenin impedance 𝑍𝑇ℎ , 

previously represented as a parallel connection of resistor 𝑅𝑀
′  and 

inductor 𝐿𝑀
′  (Ambikairajah et al., 1989), with its series equivalent 

resistance 𝑅𝑀 and inductance 𝐿𝑀 as illustrated in Fig. 2 (a).    

     From the proposed isolated circuit, the pressure and 

displacement transfer functions which are both essential to 

describe the wave propagation in the cochlea are derived. The 

pressure transfer function, 𝑃(𝑠) = 𝑉𝑜(𝑠) 𝑉𝑖(𝑠)⁄ , models how the 

pressure wave travels along the basilar membrane,  

 

𝑃(𝑠) =  
𝐾

𝑠+ 𝑎
.

1

𝑠2+𝑏𝑝𝑠+𝜔𝑝
2  . (𝑠

2 + 𝑏̃𝑧𝑠 + 𝜔̃𝑧
2),             (2) 

 

where 𝜔̃𝑧  is the adaptive notch frequency 𝜔̃𝑧 =

√1 (𝐶(𝐿 − 𝑔̃𝐿𝑀))⁄ , 𝑏̃𝑧 = 𝜔̃𝑧/𝑄̃𝑧 = (𝑅 − 𝑔̃𝑅𝑀) (𝐿 − 𝑔̃ 𝐿𝑀)⁄  

where 𝑄̃𝑧  is the adaptive Q-factor of the notch filter, 𝜔𝑝  is the 

resonant frequency 𝜔𝑝 = √1 (𝐶(𝐿 + 𝐿𝑀))⁄ , 𝑏𝑝 = 𝜔𝑝/𝑄𝑝 =

(𝑅 + 𝑅𝑀) (𝐿 + 𝐿𝑀)⁄  where 𝑄𝑝  is the Q-factor of resonant filter, 

𝑎 = 𝑅𝑀
′ 𝐿𝑀

′⁄  is the lowpass filter coefficient,  and  𝐾 is a constant. 

As per Eq. (2), pressure transformation can be modelled as a filter 

section consists of a cascade of a first order lowpass filter, a second 

 
Fig. 2. (a) Proposed simplified electrical equivalent circuit of an isolated single 

section of the active cochlea. If the voltage source 𝑉𝑂𝐻𝐶(𝑠) is eliminated it will 

represent the passive cochlea (Ambikairajah et al., 1989) (b) The equivalent 

filter representation of passive cochlea when 𝑉𝑂𝐻𝐶(𝑠) = 0  in (a). (c) The 

equivalent filter representation of active cochlea depicted in (a). Here 𝑔̃, 𝑏̃𝑧 and 

𝜔̃𝑧  represent adaptive parameters. 
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order resonant filter and an adaptive second order notch filter, as 

illustrated in Fig. 2 (c). The displacement transfer function, 

𝐷(𝑠) =  𝑉𝑚(𝑠) 𝑉𝑖(𝑠)⁄ , describes the displacement of the basilar 

membrane at the position corresponding to that section,  

 

𝐷(𝑠) = (1 + 𝑔̃).
𝐾

𝑠+ 𝑎
.

1

𝑠2+𝑏𝑝𝑠+𝜔𝑝
2.                        (3) 

 

Since the lowpass and resonant filters are common for both 

pressure and displacement transfer functions according to Eq. (2) 

and Eq. (3), a simple combined model, as shown in Fig. 2 (c), can 

be implemented. 

     The model of the filter section in Fig. 2 (c) that represents a 

small part of the cochlea is then cascaded to represent the whole 

cochlea as illustrated in Fig. 3. The input to each filter section is 

the pressure and then the output pressure from that section is 

passed on to the following filter section (and so on). This way the 

pressure wave travels along the basilar membrane. The membrane 

displacement is tapped at the intermediate point of each filter 

section. In both transfer functions, given by Eq. (2) and (3), some 

of the filter parameters are adaptive, which in turn allows for the 

filter gain and the selectivity of the filter to be varied in response 

to the input signal characteristics. In the pressure transfer function, 

the notch filter parameters are adaptive. An additional adaptive 

gain term (1 + 𝑔̃) is present in the displacement transfer function 

to control the movement of the membrane. Here, we propose to 

replace, (1 + 𝑔̃), in the displacement transfer function with the 

controllable gain resonant filter G(s) that controls both the gain and 

selectivity,  

 

𝐺(𝑠) =
𝜔𝑟

2

𝑠2+𝑏̃𝑟𝑠+𝜔𝑟
2 ,                                        (4) 

 

where 𝑏̃𝑟 =  𝜔𝑟/𝑄̃𝑟, 𝜔𝑟 and 𝑄̃𝑟 are the resonant frequency and the 

adaptive Q-factor of the filter, respectively and 𝜔𝑟 is chosen to be 

equal to 𝜔𝑝. It can also easily be shown that the gain of this filter 

at its resonant frequency 𝜔𝑟 is equal to its Q-factor and the gain 

and selectivity can be controlled by changing its Q-factor. 

     There are additional auditory mechanisms that are not included 

in the electrical equivalent circuit (Fig. 2 (a)), which further 

generate sharp frequency tuning of the membrane, e.g. the 

longitudinal shear force along the membrane (Hall, 1977). Spatial 

differentiation (Hall, 1977) is introduced as an additional 

sharpening mechanism to generate the required frequency tuning. 

The adjacent resonant filter 𝐺(𝑠)outputs are subtracted along the 

length of the basilar membrane, as illustrated in Fig. 3, to get the 

final differentiated displacement. For convenience, only a first-

order spatial differentiation is shown in Fig. 3, but two orders of 

spatial differentiation are applied by repeating the same process on 

the first order spatially differentiated output.  

     The level-dependent characteristics can be introduced into the 

transmission line cochlear models in many ways including the use 

of controllable Q-factor resonant filters as additional filters 

connected in parallel to the cascaded filters (Hirahara and 

Komakine, 1989). Further by changing the Q-factors of the 

resonant filters in the cascaded filters itself (Lyon, 2011a). In the 

proposed cochlear model, both the additional resonant filters and 

cascaded notch filter parameters were adapted to bring the 

nonlinearity. In particular, the Q-factor and the resonant frequency 

of the cascaded notch filters were changed (Eq. (2)) in contrast to 

many other active transmission line cochlear models that vary the 

Q-factor of the resonant filters alone. We refer to our proposed 

cochlear model as an adaptive transmission line (ATL) cochlear 

model.        

3.3 Updating filter parameters in the proposed ATL cochlear 

model 

In the proposed ATL model, as illustrated in Fig. 3, the filter 

parameters are adaptively updated based on energy of the 

membrane displacement outputs. Specifically, once every frame 

(e.g. 1ms frames), the average energy of the displacement output 

of each filter section is computed and the peak average energy 

value, 𝐸(𝑛), across 𝑘 filter sections on either side of each filter 

section is chosen to determine the updated Q-factor, 𝑄𝑟(𝑛), for the 

adaptive resonant filter, 𝐺(𝑠), in that section. Similarly, the Q-

factor, 𝑄𝑧, and notch frequency, 𝜔𝑧, of the adaptive notch filter is 

also updated based on 𝐸(𝑛). 
     These filter parameters are tuned in a way that complies with 

the cochlea’s experimental observations, where for low energy 

signal, the gain and selectivity of the auditory response increases 

whereas for high energy signal both reduce (Johnstone et al., 

1986). To achieve this, 𝑄𝑟  and 𝜔𝑧 should decrease with increasing 

𝐸(𝑛) , while 𝑄𝑧  should increase with increasing 𝐸(𝑛) . We 

proposed that 𝑄𝑟(𝑛) , the Q-factor of 𝐺(𝑠) , varies between its 

maximum (𝑄𝑟,𝑚𝑎𝑥) and minimum (𝑄𝑟,𝑚𝑖𝑛) values linearly based 

on the signal energy 𝐸(𝑛), as illustrated in Fig. 4. Here  𝐸𝑇ℎ,𝑚𝑖𝑛 and 

𝐸𝑇ℎ,𝑚𝑎𝑥 are the minimum and maximum energy thresholds (in dB 

 
Fig. 3. Proposed ATL cochlear model. The cascaded filter sections consist of low pass, resonant and notch filters, which model the pressure along the membrane, and 

the output taped after the resonant filters is fed into a resonant filter 𝐺(𝑠) for membrane displacement. Membrane displacement is then spatially differentiated to 

increase the frequency selectivity. The active feedback that adapts the filter parameters is illustrated in gray color. 

 
 

 
 

 
 

 

 

 
 

 
 

 

Base Apex

Filter parameters 
update

Spatially differentiated 
membrane displacement

Membrane
displacement

-

Filter section 1 Low pass 
filter i+1

Resonant
filter i+1

Notch
filter i+1

  + ( )

Filter section i+1

Low pass 
filter i

Resonant
filter i

Notch
filter i

  ( )

Filter section i

Membrane
displacement

Filter section N

Spatially differentiated 
membrane displacement

Spatially differentiated 
membrane displacement

Input 
speech



Speech communication 5 

SPL) within which 𝑄𝑟  varies (refer Fig. 4) inversely proportional 

to 𝐸(𝑛). If the output signal energy is below 𝐸𝑇ℎ,𝑚𝑖𝑛, the Q-factor 

is set at its maximum value while if the energy is above 𝐸𝑇ℎ,𝑚𝑎𝑥 it 

is set at the minimum Q-factor. Similarly, the notch frequency 

𝜔𝑧(𝑛) also varies linearly between the minimum 𝜔𝑧,𝑚𝑖𝑛  and the 

maximum 𝜔𝑧,𝑚𝑎𝑥  notch frequencies, inversely proportional to 

𝐸(𝑛) . The notch filter Q-factor, 𝑄𝑧(𝑛) , is varies between 

maximum 𝑄𝑧,𝑚𝑎𝑥   and minimum 𝑄𝑧,𝑚𝑖𝑛 , directly proportional to 

𝐸(𝑛).     
     To ascertain 𝐸𝑇ℎ,𝑚𝑖𝑛  for each filter section, we provide a 

sinusoid with a frequency matching the resonant frequency of the 

corresponding 𝐺(𝑠) and amplitude corresponding to 0 dB SPL at 

the input of the model. Then setting 𝐸𝑇ℎ,𝑚𝑖𝑛  and 𝐸𝑇ℎ,𝑚𝑎𝑥  as 0 dB 

SPL and 100 dB SPL respectively, we estimate the energy of the 

membrane displacement output of that filter section which is then 

taken to be the actual 𝐸𝑇ℎ,𝑚𝑖𝑛. Similarly, to ascertain 𝐸𝑇ℎ,𝑚𝑎𝑥 we set 

the input amplitude to correspond to 100 dB SPL and carry out the 

same process. Note that when the proposed model is used in a 

speech processing system, we estimate these threshold energies 

based on the minimum and maximum signal energies in the 

database instead of 0 dB SPL and 100 dB SPL. The values of 

𝑄𝑟,𝑚𝑖𝑛  and 𝑄𝑟,𝑚𝑎𝑥  are obtained as explained in the following 

section. 

3.4 Selection of Filter Parameters  

The proposed ATL model was designed for a sampling rate of 16 

kHz, and a total of 128 filter sections was used to model the 

cochlea. Since the proposed ATL model’s intended application is 

replay spoofing attack detection, a linear frequency scale, which is 

more effective for replay detection (Font et al., 2017) , was selected 

to model the cochlea. i.e., the resonant frequencies (𝜔𝑝 and 𝜔𝑟) in 

each section are equally spaced between 50Hz and 7900 Hz for 

consecutive filter sections. 

     We estimate the Q-factors of the notch and resonance filters in 

the pressure transfer function by assuming that the Q-factor is 

inversely proportional to the width of the basilar membrane. The 

width, 𝑊, of the membrane along its length, 0 ≤ 𝑥 ≤ 3.5𝑐𝑚, is 

given as below: 

 

𝑊(𝑥) = 0.019 + 0.0093𝑥                             (5) 

 

Thus, the Q-factor of the resonant filters, 𝑄𝑝, is, 

 

𝑄𝑝 =  
𝑘𝑝

𝑊(𝑥)
.                                        (6) 

 

where, 𝑘𝑝 is a constant. Similarly, the Q-factor of each notch filter 

is given as 𝑄𝑧 = 𝑘𝑧 𝑊(𝑥)⁄ , where 𝑘𝑧  is another constant. Based 

on experimental measurements of the membrane selectivity, 𝑄𝑝 

has been measured as 8.99 and 3.31 at the basal and apical end of 

the basilar membrane respectively, and 𝑄𝑧 was chosen to be 19.73 

and 7.25 at these two ends (Ambikairajah et al., 1989).  These 

values then allow us to calculate 𝑘𝑝  and 𝑘𝑧  as 0.17099 and 

0.37485, respectively. Finally, the filter sections are mapped to the 

Q-factors via 𝑥 based on the Bekesy frequency scale (Olson et al., 

2012). All other filter parameters are determined as per  

(Ambikairajah et al., 1989). 

4 Proposed ATL cochlear model characteristics   

The proposed ATL model produces an auditory filter shape similar 

to the one shown in Fig. 1 in close agreement with the mammalian 

cochlea’s physiological tuning curves. The auditory response of 

the proposed model at different frequency positions are illustrated 

in Fig. 5.  The model exhibits the desired characteristics of having 

broader tuning curves in the low-frequency side, whereas narrow 

tuning in the high-frequency side (Robles and Ruggero, 2001). A 

comparison of the high-frequency side slope  1 and low frequency 

side slopes  2 and  3 (shown in Fig. 1) of the curves given in Fig. 

5 with the available experimental measurements of the human 

cochlea are reported in Table 1. As observed in human cochleae, 

the proposed model exhibits much sharper frequency tuning in the 

high-frequency regions when compared to the low-frequency 

regions, which is in line with the experimental measurements 

reported on the human cochlea (Moore, 1978). Further, the slope 

measurements of the model comply well with the experimental 

measurements up to 4 kHz.  

     To analyse the selectivity of the proposed model, the correlation 

coefficients between the short-term energies of the basilar 

membrane displacement outputs of each pair of filter sections was 

estimated. Similarly, the correlation coefficients were calculated 

for the gammatone filters as well for comparison. Fig. 6 illustrates 

the heatmap corresponding to the average correlation matrix 

obtained using a large set of speech signals (the entire training 

partition of the ASVspoof 2017 2.0 dataset) for both the ATL and 

the gammatone models. The gammatone model has a relatively 

high correlation between the adjacent filters. By contrast, the 

proposed ATL model has a lower correlation reflected in the small 

off-diagonal elements, suggesting that the proposed ATL model 

leads to less overlap between frequency bands. 

 
Fig. 4. Comparison of a set of frequency response curves of the proposed ATL 
model at around 0.5, 1, 2, 3, 4, 5 and 6 kHz. It produces the general trend of 

border curves at low frequencies and narrow curves at high frequencies. 

 

 

(log scale) 

 
Fig. 5. Proposed adaptive Q-factor, 𝑄𝑟(𝑛), of resonant filter 𝐺(𝑠) as a function 

of displacement output energy 𝐸(𝑛). 
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      The active feedback mechanism in the proposed ATL model 

tunes the frequency response depending on the input signal 

amplitude. Fig. 7 illustrates the variations in the frequency tuning 

of the 1 kHz filter section when a 1 kHz sinusoidal signal of 

different energy levels between 0 to 100 dB SPL is passed into the 

model. At the lowest energy level of 0 dB SPL, the response is 

tuned to provide the highest gain of 33 dB to boost the energy of 

the signal, and it also becomes more selective. As the signal level 

increases, the filter gain starts to reduce, dropping to 0 dB at 100 

dB SPL. Along with this frequency selectivity also becomes 

broader. 

     The input-output relationship with the varying input signal level 

of the proposed ATL model that is designed to apply compression 

between 0 to 100 dB SPL is illustrated in Fig. 8. For input signal 

energies ranging from 0 to 130 dB SPL, the model performs 

compression up to around input level of 100 dB SPL, after which 

it acts linearly. The amount of compression it applies varies based 

on the frequency. At a low frequency of 0.5kHz, it offers 

compression of around 36dB up to input level of 100 dB SPL. 

Meanwhile, at high frequency 6 kHz, the compression increases to 

around 52 dB, which accounts for a large compression amount. 

The differences in the amount of compression across low and high 

frequencies are in good qualitative agreement with those measured 

experimentally (Robles and Ruggero, 2001). 

     To visualise the advantage of using the proposed active 

cochlear model over the passive auditory model, time-frequency 

representations of both genuine and its corresponding replayed 

speech signals are illustrated in Fig. 9. Here a passive transmission 

line cochlear model proposed in  (Ambikairajah et al., 1989) that 

does not include any level-dependent nonlinear compression is 

considered. It can be observed that in the ATL model output, low 

energy spectral information is emphasised to a greater degree when 

compared to the passive model. Therefore, ATL model highlights 

the differences between genuine and replayed speech signals more 

than the passive model.  

Table 1. Comparing the high-frequency roll-off (S1) and low-frequency roll-offs (S2 and S3) of the frequency response curves of the proposed ATL model 

illustrated in Fig. 5 with the experimental measurements reported a forward masking experiment (Moore, 1978), (Nelson, 1991). It should be noted that 

measures in the forward masking experiment were carried out only on two or three humans and the measurement accuracy is around 12% to 15%. 
 

Frequency 

(kHz) 

High-frequency roll-off (S1) 

(dB/oct) 

Low-frequency roll-off (S2) 

(dB/oct) 

Low-frequency roll-off (S3) 

(dB/oct) 

ATL model human ATL model human ATL model Human 

0.5 232 97-190 81 50-55 31 - 

1 325 310-650 120 90-180 25 20-30 

2 449 330-1820 142 84-160 19 - 

3 529 - 169 - 12 - 

4 622 640-2800 207 83-230 9 - 

5 744 - 283 - 8 - 

6 825 420-590 425 31-150 9 - 

 
Fig. 6. Heatmaps corresponding to the average pairwise correlation coefficients 
between filter sections for: (a) the proposed ATL model and (b) the gammatone 

filter bank model. The ATL model has a more prominent diagonal with a lower 

correlation between the adjacent filter sections in comparison with the gammatone 
filter banks.   
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Fig. 7. The changes in frequency response of membrane displacement of the 

proposed ATL model at the filter section corresponding to 1 kHz for the 

sinusoidal signals of the same frequency, with input signal amplitude varying 
from 0 to 100 dB SPL in four steps 0, 30, 60, 100 dB SPL. When the input 

signal amplitude drops from higher to lower value, the membrane response 

becomes sharply tuned, and the gain increases.   

 

 
 

 

 

 

(Hz)

 

Fig. 8. Gain of the ATL model at different frequencies, with input levels 

ranging from 0 dB SPL to 130 dB SPL in steps of 10dB. Beyond 100 dB 

SPL input level, the gain is relatively constant.  

 

 

 



Speech communication 7 

5 Experimental setup 

Experiments were conducted to investigate the potential benefits 

of the proposed ATL cochlear model as a front-end for replay 

spoofing attack detection. This section details the feature 

extraction process from the ATL model for replay attack detection. 

Further, the database used for the experiments, the experimental 

settings and the baseline model used for the comparison are 

discussed. 

     The amplitude modulation (AM) feature that tracks the 

amplitude envelope of the speech signal was investigated for 

replay detection. During replay attacks, the amplitude envelope 

may be distorted by the channel effects of audio recording and 

playback devices, noise and reverberation due to the 

environmental acoustics. Therefore, the amplitude modulation of 

the speech signal, which is considered to be important information 

for speech perception (Mitra et al., 2012), is explored for replay 

detection. For feature extraction, average output magnitude 

estimated within small overlapping windows was taken as the AM 

feature. Log compression and the DCT were then applied to the 

extracted AM components, to compress and decorrelate the 

extracted features.  Along with these DCT static coefficients, the  

delta and delta-delta coefficients were also appended to the feature 

representation.  

     All experiments were conducted on the ASVspoof 2017 version 

2.0 (Delgado et al., 2018) and ASVspoof 2019 replay databases 

(Todisco et al., 2019). These databases are a collection of genuine 

and replayed speech samples constructed for the purpose of 

developing replay attack countermeasures to protect automatic 

speaker verification systems. Replayed speech signals in 

ASVspoof 2017 database were generated by replaying the original 

utterances through various reply configurations consisting of 

different recording devices, loudspeakers and diverse acoustic 

environments. In comparison, replayed speech signals were 

simulated in the ASVspoof 2019 database. The detailed 

description of these databases are summarized in Table 2 and 

Table 3. The speech signals in both the databases were sampled at 

16 kHz.  

     In the proposed ATL model, the adaptive filter parameters were 

update using 1 ms frames (once per frame). Eight adjacent filter 

sections on either side of the filter section were considered when 

choosing the peak average energy.  

     According to studies on replay detection, the high-frequency 

regions contain more discriminative information than low and mid 

frequencies (Gunendradasan et al., 2018; Witkowski et al., 2017) 

and consequently a 1st order FIR filter (1 − 0.97𝑧−1) was used for 

pre-emphasis. The AM features were extracted every 2ms. 

Cepstral mean and variance normalization was carried out on the 

extracted AM features. 

  

    The Gaussian mixture model (GMM) is a well-known and 

commonly applied classifier for spoofing attack detection. Thus, it 

is used as the back-end classifier to the AM features. Two 512 

mixture GMM models for genuine and spoofed classes were 

trained using the training dataset. The log-likelihood ratio of the 

genuine and spoofed models was used to calculate the 

classification scores for testing. All the features presented in this 

paper for comparison purposes uses GMM as the back end 

classifier.   

      The active feedback in the ATL model introduces dynamic 

range compression and the proposed model was tested both with 

and without the active feedback to investigate the advantages of 

the model’s nonlinear active compression property for spoofing 

detection. Two states of the ATL model without the active 

feedback was considered, namely, a “low Q” state and a “high Q” 

state. The “low Q” state represents the model parameter setting 

when the minimum Q-factor is assigned to the resonant filter 𝐺(𝑠) 
(𝑄𝑟 = 𝑄𝑟,𝑚𝑖𝑛). Similarly, the “high Q” state is when 𝑄𝑟 = 𝑄𝑟,𝑚𝑎𝑥. 

When the adaptation is turned on with the active feedback, the 

filter parameters changed between these two extreme values.      

     The gammatone filter model, which is the popular choice to 

represent the impulse response of the cochlea, was used as the 

baseline (passive) model to compare and quantify the advantage of 

the high selectivity and dynamic range compression properties 

Table 2. ASVspoof 2017 version 2.0 database training and test partitions. 
 

Subset 
# Replay 

configurations 

# Utterances 

genuine spoof 

Training 3 1507 1507 

Development 10 760 950 

Evaluation 57 1298 12008 

Table 3. ASVspoof 2019 replay database training and test partitions. 

Subset 
# Utterances 

genuine spoof 

Training 5400 48600 

Development 5400 24300 

Evaluation 18090 116640 

 
Fig. 9. Visualization of time-frequency representations of proposed ATL 

model and passive transmission line cochlear model (Ambikairajah et al., 

1989) for genuine and replayed speech signals.  (a) Passive model-genuine 
speech, (b) passive model- replayed speech, (c) ATL model-genuine speech, 

(d) ATL model-replayed speech. Low energy regions become more visible in 

the ATL model than the passive model due to dynamic range compression. 
The black rectangular boxes denote some of the low energy regions of 

replayed speech signals. Here the difference between genuine and replayed 

speech signals are more emphasized in ATL model than passive model.  

 

 

 

(a) (b)

(c) (d)
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achieved by the proposed ATL model. The gammatone filterbank 

was implemented using the same frequency scale, the number of  

filters, and bandwidths as the ATL model, in order to aid 

comparison. The bandwidth of the proposed ATL model was 

measured and then used to estimate the Q-factors of the 

gammatone filters, in order to match the bandwidths of the two 

models. 

6 Results and discussion on replay spoofing attack 

detection 

In this section, comparisons of the proposed ATL model with other 

auditory models and spectral feature extraction techniques are 

presented, based on the  AS spoof 2017 version 2.0 and ASVspoof 

2019 databases. AM and short-term spectral energy based features 

are among the most widely used features for distinguishing 

genuine speech from replayed speech. The ASVspoof 2017 

challenge baseline feature constant-Q cepstral coefficients 

(CQCC) uses CQT transform for spectral decomposition. There 

are other short term energy features used for replay detection that 

are extracted from the magnitude spectrum obtained using STFT, 

such as Mel frequency cepstral coefficients (MFCC), linear 

frequency cepstral coefficient (LFCC) and spectral centroid 

magnitude coefficients (SCMC). 

     In addition to the CQT and STFT time-frequency representation 

techniques, AM features extracted from the auditory models that 

use time-domain parallel filter banks have been proposed for 

spoofing detection, which are used to compare the performance of 

the proposed ATL model. The ESA-IACC feature used Gabor 

filters for spectral decomposition (Kamble and Patil, 2020). The  

CM feature proposed in (Wickramasinghe et al., 2019b) uses 

second-order infinite impulse response (IIR) bandpass filters and 

focuses on increasing the frequency selectivity of auditory filters  

using spatial differentiation. Extended versions of CM, CM-

Adaptive-Q and SEE-Adaptive-Q (Wickramasinghe et al., 2019a), 

incorporated dynamic range compression into a parallel filter bank  

model. 

     Table 4 summarises the results on ASVspoof 2017 version 2.0 

database for the AM features extracted from the proposed ATL 

model and other parallel filter bank auditory models. As explained 

in section 5, the proposed model was evaluated with and without 

active feedback to analyse the significance of nonlinear level-

dependent compression for replay detection. It can be noticed that 

even without dynamic range compression, the ATL model 

outperforms all other methods suggesting that high frequency- 

 selectivity benefits replay detection. The performances were 

similar for the ATL model at both the “low Q” and “high Q” states. 

     The proposed ATL with the dynamic range compression 

markedly improves performance over the configuration without its 

active feedback. This suggest that low energy regions contain 

discriminative channel and acoustic information, and boosting 

them can contribute toward improving replay detection  

performance. Moreover, the feature extracted from the proposed 

ATL model perform better than the CM-Adaptive-Q and SEE-

Adaptive-Q features extracted from the parallel filter bank 

auditory model, which also incorporate the dynamic range  

compression, highlighting the benefit from large amount of 

compression and greater frequency selectivity of the proposed 

model. 

     Table 5 reports a breakdown of replay detection performance in 

terms of low, medium, and high threat conditions defined in 

(Delgado et al., 2018) for the ASVspoof 2017 version 2.0 database.  

Table 4.  Comparison of replay detection performance based on ASVspoof 2017 version 2.0 database. 

 

 

Features 
 % EER 

Development Evaluation 

Without 

dynamic range 

compression 

 

ATL (without feedback) – “Low Q” state 7.28 9.56 

ATL (without feedback) – “High Q” state 7.01 9.21 

Gammatone Model 8.78 14.63 

CM (Wickramasinghe et al., 2019b) - 10.93 

ESA-IACC (Kamble and Patil, 2020) 7.99 13.45 

CQCC (19E-SDA) (Delgado et al., 2018) 9.06 13.74 

LFCC  10.31 15.73 

MFCC  24.19 26.90 

SCMC  11.01 15.67 

With dynamic 

range 

compression 

ATL (with feedback) 5.69 7.47 

CM -Adaptive Q (Wickramasinghe et al., 2019a) - 9.42 

SEE -Adaptive Q (Wickramasinghe et al., 2019a) - 10.23 

Table 5. Replay detection performance of the proposed ATL model for 
different environments, playback and recording devices in terms of % EER, on 

the ASV spoof 2017 version 2.0 evaluation dataset. The performance obtained 

using baseline CQCC features are reported within parentheses for comparison.   

Replay 

configurations 

Conditions 

Low Medium High 

Environment 3.36 (16.68) 6.46 (18.73) 8.01 (21.86) 

Playback 6.06 (16.64) 5.92 (16.44) 8.27 (18.37) 

Recording 6.30 (10.80) 6.56 (15.99) 8.02 (17.77) 
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The proposed ATL model outperforms the baseline CQCC 

features under all settings. It can be noted that replay attacks with  

the noise-free acoustic environments, which are considered high 

threat and challenging to detect due to lack of artifacts from 

playback and recording devices (Delgado et al., 2018), (Kamble 

and Patil, 2020) are also identified with less difficulty when using 

the proposed ATL model. 

     Table 6 reports the replay detection performance as evaluated 

on the development and evaluations sets of the ASVspoof 2019 

replay database. The ASVspoof 2019 challenge included two 

features, CQCCs and LFCCs, with a GMM classifier based 

backend as the baseline systems. Along with these two features, 

AM features extracted from Gammatone filter outputs are 

compared with the proposed ATL model. The ATL model 

outperforms all three features on both the development and 

evaluation sets. These results reinforce the superiority of the 

proposed ATL model over traditional front-ends in the context of 

replay detection systems. 

7 Conclusion 

This paper presents an adaptive transmission line (ATL) cochlear 

model that includes novel adaptive notch and resonant filters to 

mimic the feedback provided by outer hair cells in the cochlea. 

This in turn leads to a cochlear model with auditory filter shapes, 

frequency selectivity, and nonlinear level dependent dynamic 

range compression characteristics in close agreement with 

experimental measurements of the human cochlea. Our results 

show that the high selectivity achieved by the proposed ATL 

model contributes to improving the replay detection performance 

compared to the parallel filter bank auditory models such as 

gammatone filters. As a result of the ATL model's nonlinear 

dynamic range compression, low energy regions that may not be 

captured by most front-ends are emphasized by the proposed 

model, leading to a better representation of low amplitude channel 

characteristics and consequently aiding replay detection. Adaptive, 

biologically inspired auditory front-ends may also be 

advantageous in other areas of speech processing. 
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